# Algebra 1 SOL Review Session

Day 2 Agenda:

- 1. Overview Day 2
- 2. Relations and Functions
- 3. Slope
- 4. Graphing Linear Functions



# Algebra 1 SOL Review Session

### Day: 2 Topics: Linear Functions and Slope

### **Key Concepts:**

- · Relations and Functions, Evaluating Functions
  - o Domain and Range
- · Slope
  - o Parallel and Perpendicular Lines
- · Graphing Linear Functions
  - o Intercepts, Zeros, Slope-Intercept Form

#### **Guided Practice:**

Relations and Functions

Activity 1: Slope Identification (Handout)

Graphing Linear Functions

#### Independent Practice:

| What is the slope of the line represented by the equation $3x - 2y = -8\hat{r}$ | Let $f(x)$ =    |
|---------------------------------------------------------------------------------|-----------------|
| 23 2y - 0.                                                                      | accessors shows |

Let f(x) = x and g(x) = 6x - 1, complete the statements to compare the graph of g(x) to the graph of f(x).

The graph of g(x) is shifted up/down from the graph of f(x).

The graph of g(x) is steeper/less steep than the graph of f(x).





What is the slope of the line that is perpendicular to the line that is represented by the equation  $\frac{2}{3}x - 2y = 8$ .

Using the ordered pairs shown, create a relation containing three ordered pairs with a domain of  $\{-1,2,4\}$ 

| (-3,-1) | (-1,0) | (-2,2) |
|---------|--------|--------|
| (4,-2)  | (3,4)  | (2,3)  |

Identify each function that has an x-intercept of 3.

$$f(x) = \frac{-4x+15}{5}$$

$$g(x) = 3 - \frac{1}{2}x^{2}$$

$$h(x) = \frac{5}{3}x - 5$$

$$j(x) = (x+3)(x-5)$$

$$k(x) = 3x^{2} - 11x + 6$$

# Algebra 1 SOL Review Session

More Independent Practice (Multiple Choice)

Which relation is a function?

does not repeat

 $\begin{array}{c|c}
\times & \{(2,3),(-3,5),(3,0),(2,6)\} \\
& \frac{x & y}{-2 & 5}
\end{array}$ 



X {(2,4),(-4,2),(0,0),(2,3)}



Which of the following graphs appears to show a relation that is not a function?

A.





C.





The graph of line p is shown. Which of the following is the closest value of the slope of line p?



Let f(x) = x. The graph of g(x) is shown. The slope of the slope of f(x).



A. Twice

B. One-half

C. Two more than

D. Two less than

### Relations and Functions

#### Definitions

Relation: Set of ordered pairs

| X  | y |
|----|---|
| 2  | 5 |
| 3  | 7 |
| -6 | 2 |
| 8  | 0 |

Domain: Set of all x-values (input) of a relation

independent

Range: Set of all y-values (output) of a relation dependent

Function: Relation where each element of the domain is paired with exactly on element of the range.

Vertical Line Test

(X) Ly shows one time

Directions: Identify the domain and range given each of the following relations.



| x  | у |
|----|---|
| 2  | 3 |
| -6 | 3 |
| 8  | 3 |
| 10 | 3 |
| 2  | 5 |



Domain 3-2,3,6,8}

Domain 3-6, 2, 8, 103 Domain 3-5, -4, -3, 0, 23

33,63 Range

Range

Range { -1, 0, 3, 5}

4.





(write as an inequality)

Domain

Range

Domain

### Relations and Functions

Directions: Determine if the relation is a function. If it is not a function, state why it does not meet the definition.

6. 0





9.

| X   | У |
|-----|---|
| 1   | 6 |
| 2   | 6 |
| 3   | 6 |
| 4   | 6 |
| 4 / | _ |

|    |   | A 4 A |
|----|---|-------|
| 10 | w | 5 2 8 |
|    | , |       |

| X  | y |
|----|---|
| -2 | 2 |
| 0  | 3 |
| 2  | 4 |
| 4  | 5 |

11.

8.

| x   | y |
|-----|---|
| -2  | 3 |
| (0) | 4 |
| 4   | 5 |
| 0   | 6 |
| Nt  |   |

12. 
$$\{(2,-3),(3,5),(-3,5),(-2,6),(7,0)\}$$



13. 
$$\{(-2,8),(5,-7),(4,9),(5,0),(9,6)\}$$

14.





18. What is the range of  $f(x) = (x-2)^2 + 3$  given that the domain is x > 0?



**19.** Given  $f(x) = x^2 - 2x + 3$ , find f(-2).

### SOL Review: Slope Identification

### What is slope?

Definition

Describes the steepness and direction of a line

Finding slope given two points on the line:  $(x_1, y_1)$  and  $(x_2, y_2)$ 

Method 1:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Rise

Method 2:

$$m = \frac{\Delta y}{y}$$

where a means "change in"-subtraction.

Finding the slope of a line given an equation:

Solve the equation for y (slope-intercept form). The coefficient of x is the slope of the line.

Slope can be one of four different things:



negative



positive



zero (m = 0)



no slope (m undefined)

### HOY-VUX

Horizontal Lines (HOY)

0 slope

y = ##

Vertical Lines (VUX)

Undefined slope

x = ##

Parallel and Perpendicular Lines

Parallel Lines have the same slope

Perpendicular lines have negative reciprocal

slopes.

# **SOL Review: Slope Identification**

Directions: Find the slope given the information.

1. Contains the points:

(-2,5);(3,-4)  $M = \frac{\Delta Y}{\Delta x}$   $5 = 4 \qquad 9$ 

2. Graphed below:

3 P.P.S.

3. Has the equation:

 $y = -\frac{1}{3}x + 2$ 

y=nx+b

6. Contains the points

(5,5);(-3,5)

4. Graphed below



Parallel to the line that has the equation:

-2x + 4y = 24

+9x +9x

4 24 4

2 2

7. Has the equation:

Hoy VUX

8. Perpendicular to the line that contains the points: (-2,3);(-4,-1)

M= DY = 3--1

9. Graphed below:



10. Contains the points:

(-3,-5);(-3,-2)

11. Graphed below:



12. Has the equation:

y = -2

### **Graphing Linear Functions**

### Terminology

What is a Linear Function? A function whose graph is that of a line.

Standard Form

ax + by = c

a,b,c are integers and a is a positive

Slope-intercept form

y = mx + b

m is the slope of the line

b is the y-coordinate of the y-intercept

Intercepts: Where the graph crosses an axis

y-intercept: graph crosses y-axis and x = 0

x-intercept: graph crosses the x-axis and y = 0

Zeros: x-coordinate of an x-intercept

Graphing using Desmos:

Type the equation in the box exactly as it is written

Graphing Linear Inequalities

- 1. Use Desmos. Type the equation in exactly as it is written
- 2. By hand:

Solid  $(\leq, \geq)$  or dotted (>, <)

Shade above  $(>, \ge)$  or below  $(<, \le)$ 

Identify the x-intercept and y-intercept of the

relation: 3x - 2y = 12

x-intercept

y-intercept

What is the zero of the function below?

$$f(x) = \frac{3}{2}x - 9$$

Sketch the graph of the linear function below:

$$3y = 2x - 6$$



Sketch the graph of the linear function:

$$g(x) = -\frac{1}{2}x + 2$$



# **Graphing Linear Functions**

Let f(x) = x. The graph of g(x) is shown. The slope of g(x) is \_\_\_\_\_\_ the slope of f(x) and the graph is shifted \_\_\_\_\_ from f(x).



Let f(x) = x and g(x) = -3x - 4, complete the statements to compare the graph of g(x) to the graph of f(x).

The graph of g(x) is shifted up/down from the graph of f(x).

The graph of g(x) is steeper/less steep than the graph of f(x).

Let f(x) = x and g(x) is up 4 units and  $\frac{1}{2}$  as steep as

f(x), graph two points that are on g(x).



Graph the line that is perpendicular to  $y = \frac{2}{3}x - 2$  and

contains the point (-4,1).



Graph the following inequality:

$$y < \frac{2}{3}x - 2$$



Graph the following inequality:  $y \ge -2x+2$ 

